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I. Introduction

This is the second year of the JPL - sponsored Mathematics Clinic at CGS
concerned with the metal-oxide-semiconductor-field-effect-transistor (MOSFET),
in addition to the 1984 summer project. The primary focus of last year's
Clinic was to obtain values of various device parameter constants used in
one-dimensional (1-D) current models from data supplied by JPL (“parameter
extraction"), and so the work was numerical in nature.

The goal of this year's MOSFET clinic was to deliver to JPL a
mathematical model of the device dynamics from which an accurate and
computationally efficient drain current expression could be derived for
subsequent parameter extraction purposes. The initial plan was to obtain a
simple 2-D model. However, a careful study of several 1-D models (see [2],
[3], [4], [7], [11]) revealed many weak points in their derivation. Moreover
no one of them included an analysis of the source and drain regions.
Consequently the team decided to Took for a more "acceptable” 1-D model,
namely one whose derivation did not include procedures and approximations
which we could not justify, and in which the role of the source and drain
regions would be incorporated. At the same time we wanted to provide a
comparison of the 1-D models previously mentioned together with some
explanation of their failure to provide accurate drain current values at VGS
<2 and VBS < -3 (phenomena that were detected by last year's clinic). We
feel that all these goals have been achieved.

The 1-D model provided in 3.4 is mathematically sound and
satisfactory. It allows the source and drain to operate in different regimes;
it is not based on a questionable derivation of the depth of the depletion
layer and it includes the contribution of current from the pinched-off part of

the device, a feature not seen in any of the previous models.




The analysis of source and drain regions of 4.2, 4.3, although not
entirely original is assembled here for the first time. The resistances RS
and RD of the source and drain regions are estimated and used in 4.4 to
evaluate the potentials ¢SO and °SL at the source and drain end of the
channel respectively:

den = Rl

SO S

Voe = &¢, = RLT .

DS SL D

There are reasonable doubts that RSI and RDI may be related to the
quasi-Fermi level for electrons at the source and at the drain more than to
QSO and QSL . Future investigation is needed to decide their proper place
in the current expression.

The qualitative and quantitative comparison of 5.1 - 5.5 will provide JPL
with a useful quick-reference analysis of the most celebrated long-channel
models, from the Pao-Sah double integral formula to the Brews [2], [3] and
Wiele [11] closed-form current expression. No extensive introduction to these
previous models will be made here; reference will be made to the 1984 summer
report [5] by Morris-Everson and to the comprehensive book by Sze [10].

We conclude with the 1ist of symbols and notations (Appendix 1) used in
the report and a comparative list of them (Appendix 2) as used by the

referenced authors.




IT. CHANNEL MODELLING

2.1 Charge Distribution

Estimation of the number of electrons in the inversion layer at any
point along the channel is essential to an accurate evaluation of the current
at that point. The number may be given by the statistical mechanical distri-
bution dependent upon potential and thermal energy. One assumes the Fermi-
level to lie somewhere within the forbidden region, and that there will
be few enough conduction electrons that the Boltzman approximation to the
Fermi-distribution may be used. Within the bulk one applies the Taw of
mass action to obtain that the product of free carriers will be a constant,

dependent only upon temperature. That is,

2.1.1 np = n?

Assuming that for p-type material the number of positive ion impurities

is much greater than negative impurities, NA >> ND’ we approximate

~ . O
2.1.2 NA nie s
and
.2
2.1.3 NDNA =n;

Here NA and ND are estimated concentrations. In formulating distributions
for free holes and electrons, we assume that for a p-type semiconductor,
the holes (being the majority carrier) feel no effects due to the local quasi-

Fermi level, so that

2.1.4 ¢p = ¢




and

~B(d-Vpe=dc)
2.1.5a p = nie BS *F ,

B(¢-VBS-¢H)
n.e ,

2.1.5b n ;

where all potentials are in volts.

The inclusion of the body-to-source potential in these distributions
is to account for the fact that the Fermi-level will be adjusted downwards
following the application of negative potentials to the body. The inclusion
of a quasi-Fermi level for electrons allows for variation in electron distri-
bution along the channel, such that the relative (and complementary) per-
centages of current due to drift and diffusion may change. The quasi-Fermi

Tevel is assumed to lie within the interval

2.1.6 + V

0 = Vgg < ¢, < ¢ = Vgg * Vps

The left hand side represents the value of ¢n at the source end of the
channel, while the right hand side represents its value at the drain end.

Hence

B(¢-¢F)
n;e at the source

=
i

2.1.7

B(o-dc-Vie)
nie F DS at the drain

o §
n

This allows for variation of the channel potential dependent upon the poten-
tial applied to the drain, VDS‘ The electron concentration is assumed to

be negligible at any point in the channel when the exponent in (2.1.5b)



becomes zero (see 3.4). For every y<¢ [0,L], where L is the length of
the channel, we obtain a value x(y) at which ¢ = ¢, * VBS‘ This value
represents the depth of the inversion layer at least in certain regimes

of operation (see 3.4 for additional details).

2.2 Poisson's Equation and Surface Potential

Using the charge distribution of 2.1 we can formulate a partial dif-
ferential equation satisfied by the electric potential ¢. Since we are
interested only in the stationary state,Maxwell's equations are reduced

to the single Poisson's equation
2.2.1 div(ssv¢) = p

where £g is the semiconductor permittivity and p is the charge density.

In our case we have
2.2.2 = gq(n-p + N - N)
6. p q p A D

where NA

(2.1.5a), (2.1.5b) and the assumption that charge neutrality must exist

and N; are the jonized acceptors and donors respectively. Using

in the bulk of the device we obtain

B(d-0 -Voo) =B(¢=¢--Voo) Bo- -Bo
2.2.3 p = qni(e n "BS -e F 78S +e F-e F)

where n, is the intrinsic carrier concentration.
If we assume that € is position independent (homogeneous material)

we obtain from (2.2.1) and (2.2.3)

an:  B(¢-d Vo) -B(o-0c-Voo) Bo- -B¢
2.2.4 A = —1 (e n "BS -e F"BS +e F-e F)



If the variables x,y,z are used to denote the depth, length and width
of the device respectively we have that ¢ is independent of z and we
obtain

an;  B(9¢-9_-Vpo)
¢ _ i (e n BS/_

3¢
2.2.5 +— = e

'B(¢—¢F-VBs)+eB¢F_e-B¢F)

We now assume that the horizontal component of the electric field changes

much more slowly than its vertical component, which implies

2 2
2.2.6 a—% >> a—%
X a3y

at any point of the channel. This assumption (called the gradual channel

approximation) enables us to write

B(9-0¢,-Voo) =B(o=dc-Vpe) Bép -Bo
5 27 QE& _ Eii (e n "BS' g F "BS" o Fa F)
dx2 €s
d {[do)?) . , do o%
This can be integrated simply by noting that Ix L ™ } = 2 > 7 Thus

dx

—g ([92}2] ani {eB(¢-¢n‘VBS)_ B(-¢+¢F+VBS)+eB¢F_e—B¢F} gg
dx e dx

V2 122 [ -4~V -9V -Bép)
) 2 (@} ) (@} _2an [es(cp ¢ BS)+eB( o+op BS)+B¢{eB¢F-e B Fj
- X=

B(¢=¢ -Voe) B(=¢+oH+Voe) Bo  -BdeY |
[e n"'BS’, FVgs +B¢{e e “’FJ
X

Our boundary conditions are that ¢ ~» VBS and d¢/dx > 0 as x - =,



Simplifying we arrive at

N’

Py
2an; | %( B(¢-9 _-Vpe) B(=d+d+V, o) Bo. -Bo Bé. ~-Bd
_ [ 351] (e n BS te F "BS + B(¢-VBS)e F_e F)-e F_e n

S

where the dependence on ¢F and VBS is implicit. Also, physical considera-
tions necessitate taking the negative square root as can be seen by the location
of d¢/dx in Figure (2.2.1). At the surface x =0 and ¢ = ¢s. Therefore

the electric field at the surface is a function of ¢s' Thus

d¢
dx

x=0 Beg

relation for the surface potential ¢s' Gauss' Law equates the change in

2qn. 3
= _{ 1] F(¢S,¢n). It is now possible to establish an implicit

electric displacement in a region to the charge enclosed in that region:
| e E .ndA= 3 q; - However, we assume there to be no charge present in
the oxide Tayer so the field will be constant from gate to surface. The
electric displacement of the oxide layer, Dox’ can be calculated rather
simply and equated with the electric displacement of the body, Bbody' Re-

ferring to Figure (2.2.1) we see that (for x-components)

Vae=0 2gn. 12
GS "s i
Eox = - and Eyoqy = "] Floge0p)
oX tox body { 355] s’'n
Therefore we may equate the two displacements
Cox
DOX =" t—OX- (VGS-¢S) = "a COX F(¢s’¢'n) = Dbody
( 1
€ -2qn.e_|%
. where we have taken C°x = 595 and o = El_ 1S
oX ox B
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FIGURE 2.2.1

Top shows the graph of e¢ against x; the figure below shows a MOSFET side-on
using the same x,y axes.



Finally ¢ is defined by the implicit expression

2.2.10 0, = Vgg = @ Flog,0,)
where

[ 8(¢ =0 _-Vpe) B(-¢_+o-+Voe)
2.2.11 Flog,0,) = e ° " BS'ye s FBS

N

Be- -Bo Bor -Be
+8(o -Vged(e - )we f-e "

To obtain values for the source end of the channel we use the conditions:

¢ = ¢SO and ¢n = ¢F - VBS' Similarly, for the drain end of the channel

s
we use ¢, = dg and ¢n = ¢p - VBS + VDS' Equation (2.2.11) is the Pao-Sah
(see 2.4) exact one-dimensional expression for surface potential which can
be used to evaluate the potentials at the source and drain ends of the channel
by appropriate choice of -

The models of Brews and Van de Wiele presented in the next chapter use
different forms of (2.2.11) to obtain %50 and g - We shall now describe

their approach and we postpone to Chapter 5 a comparative numerical study

of the results obtained.

Brews'computation of LI and ds

In his derivation of surface potential Brews assumes the carrier densi-
ties (2.1.5a) and (2.1.5b). The surface potential expression itself is
derived by equating the space charge densities obtained through Gauss' Law
with the integral of a simplified Poisson's equation (see [3], pg. 19, see

also pg. 8). That is
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2.2.12 p = -COX(VGS-¢S) (Gauss) ,
(86 =0 Vo) Bo. -go ) *
_ “'Ys 'n "BS _ F_ n <
2.2.13 p = Coxale +B(¢S VBS)e e } (Poisson) .
Equating yields
1
B(o.=0 ~Vo.) Bop|?
2.2.14 o = Voo - a(e S B (e ~Vge)e F}
“Be, -5
Since at its largest value, e < 10 ¥ << 1, it has been neglected.

Comparing (2.2.14) with (2.2.11) we see that while the expressions are obviously
similar there are terms left out. These absent terms are a direct result

of the way Brews takes Poisson's equation as d2¢/dx2 = q/es (n+NA), which
considers only the effects of acceptor dopant ions and electrons (see [3],

pg. 5). Accordingly, we find the terms associated with the donor dopant

ions and the hole density to be missing in (2.2.13). This does not seem

6+10-6

unreasonable considering their effect; near the surface, (p+ND)<(10— )<<1, whereas

(n+N,) > (10% + 10°

). Formula (2.2.14) is clearly just an approximation
of the exact (2.2.11). It will be seen in Chapter 5 to be an excellent approxi-

mation "when appropriate”.

Van de Wiele computation of ¢SO and ¢SL |
The Van de Wiele model begins a little differently as the carrier densities

are defined by the following:

2

2.2.16 n= 1 oBe7V(y)) and p =N

3

e'B(¢-VBs)
A

>
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Bo

With the relation N, = n.e F we find

A

B(¢'V(y)-¢F) B(-¢+¢F+VBS)

2.2.17 n=n.e and p=n,e

To Van de Wiele, V(y) - VBS accounts for the difference between the hole
and electron quasi-Fermi levels ([11], pg. 991). In other words, V(y) -

v Substituting this we find the distributions to correspond

BS = ®n 7 %
precisely to our previously derived ones ((2.1.5a) and (2.1.5b)). The general
expression for surface potential is derived in the same manner as Pao-Sah

and Brews, namely equating charge densities. According to Van de Wiele (see

[11], (6) and (3)):

2.2.18 p(y) = -C__(V

ox ¢_) (Gauss) ,

GS ~ s

1
B(o_-¢ Vo) B(=0_+o.+Voc) Bé- ~-Bo |°
_a Cox[e s Pn7Bs’ PTSTHFT RS +8(6,~Vgg-1/8)e Fg "0n

2.2.19 p(y)

(Poisson).

Equating these yields his expression for surface potential:

1
B0 =0, -Vps) B(-d *top+Vpc) Bop ~Bd,|”
2.2.20 6 = Vgg - a(e s 'n BS,C s F +B(o Vge-1/8)e Fe M
-B¢F
We see that (2.2.20) differs from (2.2.11) only in the exclusion of the e
-B¢ -
term. The fact that e F< 10 5 << 1 makes this reasonable and accounts

for the discrepancy. Comparing (2.2.20) to (2.2.14) we see the Van de Wiele
model produces a closer mathematical correspondence to the exact solution

(2.2.11) than the Brews model. However, for the purposes of approximate
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calculations, Van de Wiele suggests distinguishing between strong and weak
jnversion of the surface (see [11], pg. 993). Strong surface inversion is
associated with the joint condition VGS >> VT and ¢, = ¢ * VBS < Vl’

where V1 is the potential at which the transition between inversion and
depletion regimes occurs (this can be considered a drain saturation potential);
and VT’ the threshold potential, is the particular gate potential for which

V. becomes equal to the source potential (this is the minimum gate potential

1
to produce an inversion regime). For this case, charge density is approximated

by:

2.2.21 p=-aC

B(6.~0 Vo))
{e s 'n BS ] (Poisson)

Equating this with the expression from Gauss, (2.2.18), gives an implicit

relation for surface potential in a strongly inverted device:

1
B(d = -Voe)|?
2.2.22 bos = Vgs - a{e s 'n B3 ] ,

Weak inversion occurs when \IGS << VT or when VGS >> VT and ¢n - ¢F +

VBs > Vl.
In this case charge density is approximated by
Ps
1, POl
2.2.23 p=-a Coteleg - Vgs ~ E)e (Poisson)

Equating this with (2.2.18) gives an implicit relation for surface potential

in a weakly inverted device
' 1

] 1, BOF|
2.2.24 S - VGS - a fs(¢sw - VBS - E)e

Comparing (2.2.22) and (2.2.24) with (2.2.20) we notice missing terms.



] B(-¢S+¢F+VBS) -B¢n
Neglecting e -e in (2.2.17) seems quite reasonable since

they are < 10-5 << 1. To understand how (2.2.22) and (2.2.24) are derived
we must consider the charge densities. The total space charge density is
the sum of the free carrier and depletion charge densities, i.e., Psc = Py
+ Pp- Py can be considered the effect due to electrons and Py the effect
due to holes and doping. We are now approximating the total space charge

by

B(¢S-¢H-VBS) B¢F %

2.2.25 b = a C, (e +B(9 Vg - %)e ) = oy * Pp

In a weakly inverted device we neglect the effect of free carriers which
causes the first exponential to drop out, hence (2.2.23) and (2.2.24). In
a strongly inverted device we assume the free carriers to be much greater
than the holes and so the second exponential drops out, thus (2.2.21) and
(2.2.22).

In the Brews model, one formula, (2.2.14), suffices for calculation
of surface potential. In the Van de Wiele model one must first determine
whether the surface is strongly or weakly inverted to choose the appropriate
expression. Formulae (2.2.22) and (2.2.24) are clearly approximations of
(2.2.11) but their accuracy will be seen to be poor relative to Brews.

To determine the surface potential at the two ends of the channel we
must consider the change in the quasi-Fermi level, L based on its position.
It is assumed that o, at the source end of channel and at the source itself
are equal (see [3], pg. 20). Thus to calculate surface potential at the source
end of the channel we may replace o by ¢F - VBS ([3], (4.22)). Simi-

larly, ¢ at the drain end equals ¢_ at the drain itself and we may replace
n n

13



¢ by o - VBs + VDS ([3], (4.24)). These substitutions may be made in

n
all three models. To sum up then, the three models generate four similar
expressions for surface potential at the source and drain ends of the channel.

At the source end (¢n = ¢p - Vgo):

Pao-Sah
B(den=9r) B(-dcqtdctVnc) Bd. -—BRo
_ ) S0 °F S0 *F 'BS ) F_ F
2.2.26 450 = Vgs a[e +e +8(¢gqVps) (e e )
3
BoF -B(¢F-VBS+VDS)] :
-e -e ’
Brews
Bldan=d¢) B :
_ } S0 °F ] F _
Van de Wiele
{ 1 B¢F}%
*suo = Vas T | Plosuo " Vps ~ B)e ;

2.2.28

{ B(dgcq=dc) 2
v o SS0 °F

%sso0 = Vgs T

+V

At the drain end (¢

n = % = Vgs * Vps):

Pao-Sah

Bloe =dr-Vne) B(=do; +op+Vpe)
2.2 29 o PSLPFTTDS’ SL PFVBS

s = Vgs *B(og ~Vgs)

B¢F 'B¢F B¢F -B(¢F-VBS+V059 :
(e " -e )-e " -e
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Brews
8(oe, 0V o) 8o, |?
_ ) SL™®F DS } Fl .
2.2.30 ¢SL - VGS a{e +B(¢SL VBs)e ] )
Van de Wile
7 - 1
1, 8%
oL = Vgs ~ »|Blogy Vg ~ gle ;
2.2.31
Blogs "0rVps) |
® = V.. - ale
sst - VGS

2.3 Derivation of J 06y)

The current in a MOSFET is the result of electron flow in the inversion
layer, which is governed by the drain-to-source potential. This causes a
drift towards the drain and a statistical diffusion due to heat energy. These

two effects are summed up as follows:

2.3.1 I = J (jdr“ift + jdiff.)dx s
: _ o 39

2.3.2 Jarift = ¥an 3y

2.3.3 ‘]d‘lff = ’QD %.ryl ’

where D 1is the diffusion rate determined by the Einstein relation as

2.3. = B
4 D :

The current density due to drift is proportional to the product of mobility

of electrons, number of electrons, and electric field along the channel.
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Because no current leakage is assumed through the oxide and depletion layer
except for negligible recombination effects, one may assume that the contri-
bution’ of the vertical field component to the current is negligible with
respect to the contribution of the longitudinal component.

The current density due to diffusion is proportional to the electron
concentration gradient 3n/3y where the number n of electrons is deter-
mined by the potential ¢, according to the Maxwell-Boltzman approximation

to the Fermi-Dirac distribution. Here we allow

Blo-Voc-¢ )
_ - - 3 BS "n
2.3.5 qD —y qD 3y (nie
Hence
j = l___
2.3.6 Jgqifs. qD( )

Equation (2.3.6) provides a much needed relation between the drift and
diffusion components since both are now expressed in terms of the surface
potential, ¢, and the electron guasi~Fermi level ¢n. Note that the variation
in concentration along the channel is accounted for by variations in surface
potential, 9> and quasi-Fermi level, such that the electron distribution
changes as one approaches the drain. Upon substitution of (2.3.6) and (2.3.2)

into (2.3.1) we obtain

¢
2.3.7 I =W qun 1 4x

where the integral is over the inversion layer.
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Knowing the electron concentration, n, and the quasi-Fermi level gradient
3¢n/ay at any cross-section of the channel we can derive the current flow
through the section by integrating (2.3.7). The principle of conservation
of charge will then allow us to eliminate the y-variable with an integration

along the channel to obtain

a¢
2.3.8 I = D qun 3y dxdy

It is worthwhile to note that since the total current .flow at any cross-section
of the channel is the same, the diffusion portion of the current increases
as the drift component diminishes and vice versa. The use of quasi-Fermi
level for the electrons carries this information, by assuming that ¢n changes

with y, while the Fermi level OF remains fairly constant.

2.4 The Pao-Sah Formula .

The Pao-Sah formula is an "exact" one-dimensional expression for the
drain current based on (2.3.8). We call it "exact" in the sense that no
other simplifications are introduced in addition to the gradual channel
approximation.

It is based upon the idea that at any point along the channel the current,

I, is equal to the integral of the current density over the inversion layer:
x;(y)

2.4.1 I(y) = W f J (x,y)dx
0 n

Using the expression for current density, (2.3.7), one gets

do (¥)
dy

2.4.2 I(y) = qufo n(x,y) dx
x;(¥)
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Since the quasi-Fermi potential for electrons is assumed to be independent
of x, the y-dependence may be removed by integrating both sides of (2.4.2)

along the channel. Hence

L do _(y) (0
2.4.3a I = HﬁH | gy f n(x,y)dx dy
Q xi(y)
‘ ¢r-Vps*Vp (g
2.4.3b = —ﬁ— f J n(x,y)dx do_

opVgs XY

The 1imits of the first integral in (2.4.3b) are the value of ¢n at the
source and drain ends of the channel, as postulated in (2.1.4).

The inner integral of (2.4.3) must now be put in terms of ¢, and ¢.
This integral represents the charge present in the inversion layer at an
arbitrary point in the channel, which is known as a function of potential.
Using the Poisson equation (2.2.7), we may integrate once, using the boundary
conditions that ¢ - VBs and d¢/dx are equal to 0 at x = ., This obtains

the function in equation (2.2.11), or

_F 2 b
: dx BLD

Using thisfact, we may express the inner integral of (2.4.3) as

[0 s n(e,0.0,)ds
2.4.5 J n(x,y)dx = )
X (¥) oetVps (g
¢S eB(¢-¢n+¢F-VBS)
= BLnNn- J d¢
D" 0 F(¢’¢nf¢F)

where (¢F+VBS)

of the inversion layer, respectively.

and ¢_ represent the value of ¢ at the bottom and top



Combining (2.4.5) with (2.4.3), we obtain the double integral formula
¢~ Vps*Vp 0 JFlomoptVps)

"

%r~Vgs " optlps

) BLqu“ni [

2.4.6 I = T d¢d¢n

F(9,6,.9F)

This formulation is general, and valid in all regions of operation.

19



ITI. SIMPLIFIED LONG CHANNEL MODELS

3.1 The Pierret-Shields Single Integral Formula

b The Pao-Sah double integral formula given in (2.4.6) is:
G 1 Wug J@n(L) f¢s eB(¢-¢n) "
= s ——— dode
-1 D ‘ F(3,8.,0.) n
/?L.LD @n(o) ¢F n*F
where @n(O) =9 - VBS

Note that in this section, ¢ 1is measured from the substrate.

The ¢ integral is essentially over the inversion layer. Since

small in the depletion region outside of inversion, we can subtract the

¢

3 =0

is

value of electron concentration and extend the integration through the whole

depletion region. Thus (3.1.1) becomes

o (L) o

n( S B(¢-¢n) -Bo

(3.1.2) s J J € e " o
1.2) I, = odo_
P vy Yo o) o F(®%0%) n

with
8(e-2 )  B(0.-0) BO.  -Bd_ B
(3.1.3) F(o,0 ,00) =fe " +e | +gofe )-e "-e ')

e

The key thing to realise now is that

(3.1.4) oF _ -B (e -e

20



Thus (3.1.2) will become an integral with respect to F instead of o, -

-/EWuS [¢n(L) jQS

(3.1.5) PR
. 2,(0)

D BL.LD 0 a¢n n

At this stage, referring to Figure 3.1.1, we change the order of

integration to give:

¢, (L) ® N (L)
af 6 = aF
(3.1.6) a5, dé dbn o5 d@n dé
¢ (0) ] 10 ¢, (0)
N ¢ (L)
aF
+ a@ﬂ d¢n do ,
*
@SO $

where the curve in Figure 3.1.1 is given parametrically by:
*
e, =2 (y)
% = ¢s(y) .

*
For a given ¢S(y) , ¢n(y) is specified by the Pao-Sah gate voltage relation
(2.2.10).



Figure 3.1.1 Curve ¢ = o (y) » 0 = Q:(Y) .

Hence we arrive at:

on(L) 4 oy %50
5F -
-(_;g d¢d-pn = F(qa,vD,ch)dqa - F(@,o,ch)dq:
Jcbn(O) 0 0 0
s
*
- F(¢5.¢n,¢»F)d~bs .
%0

We can evaluate the last term of (3.1.7) by referring to (2.2.10).

BLnC
DOX—F¢ *

(VGB = <I’s) /?Es = ( ss¢ns <X>F) .

where V =Y -V

GB GS BS*
The last integral thus becomes:
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qps|_ ®SL

L.C
* _ _ D ox 4s
(3.1.9) Fdg,® ,op)dd, = (Vgp - %) s, S

50 0

PLpCox 1 2 2
e, | Veal¥sL T ¥so) - 2 s~ %0 ) |

Thus we derived the single integral form of the Pao-Sah current expression:

(
WuC_ \2
- 0x b 1 2 2
(3.1.10) 1, N Veplbs ~29) - 3 (bg " -2gq" )
*s0 P
Woe V2
3 F(.4 (0),4.)de - | F(2,8 (L),5.) d
ﬁL.LD » n bl F » n » F) ¢
0 0
where ¢SO and ¢SL are calculated by
V2e
3.1.11 = >
( ) Vea

e + 77— Flecy 2 (0), &), and
S0 7 BL,C,, $0> “n F

V2e

S
t e Floq @ (L),®
SL 7 BLpCyy SL*®n

(3.1.12) vz =9 ) o

23
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3.2 Brews Model

The Brews charge-sheet model is derived with the same reasoning which
leads to the double integral form mentioned in (2.4). The number of electrons
in the inversion layer is estimated using the charge-sheet approximation

and the current density at any point of the channel is found to be

30,
3.2.1 I =, 5

where Qn is the charge of electrons/unit area and ¢n is the gquasi-Fermi
level for electrons. We now illustrate the method used by Brews for computing
Qn and a¢n/ay.

To do these calculations we need to know how charge is assumed to be
distributed within the device; this is virtually the defining characteristic
of any simplified one-dimensional model.

The important thing to realize in Brews' derivation, is that he only
considers two types of charge in the MOSFET; namely free electrons, n, and
ionized acceptors, NA'

The omission of jonized donor charge, ND’ js acceptable, since it always
occurs with NA in the form NA - ND' Since ND << NA’ the approximation

N, - ND = NA is seen to be good.

A

The omission of charge due to majority carriers (for n-channel devices
these are holes, p) is more noteworthy. In fact, p 1is very small at the
surface, and remains small up to some considerable depth--this is essentially
the depletion region. Proceeding deeper into the device (x increasing)

p tends asymptotically to N,, its value in the bulk. Thus there is no

A’
definite Tower boundary to the depletion region. The approximation Brews

uses is that p = 0 down to some depth x = w, where it attains its asymp-
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totic value. Thus we can think of the charge being distributed in the following
manner. At the surface is an infinitely thin "charge sheet" of electrons;
below this there is solely the constant doping charge, NA’ down to some depth
w; beyond this, charge neutrality exists.
To find the current, we will first deal with Qn' Since direct evaluation

is very difficult Brews uses the equality
3.2.2 Q =1Q

where Q_ is the total charge/unit area and Q, is the charge/unit area
s D

in the depletion layer due to ionized impurities. This is found to be
3.2.3 QD = -qNAw

with w equal to the depth of the depletion region. At this point we encounter

one of the most questionable steps of Brews' derivation. To obtain w he

writes
2 gN

3.2.4 9—% - A 0<x<w
dx &

which holds in the depletion region before inversion takes place. Therefore,
using the conditions ¢ = VBS’ de¢/dx =0 at x =w we have

agN
A
3.2.5 8(x) = Vgg + %, (x-w) 2

Now it is assumed that (3.2.5) remains true after inversion and can be extended

to find ¢s’ the value of ¢ at x = 0. This gives us

1
2

3.2.6 W =2 Lp(Bog - BVpo)



Brews then states (but does not use) the result
1
2

3.2.7 W= v2 LB(B¢s - BVBS - 1)

which he claims (without proof) comes from a "more accurate derivation that
includes majority carriers more carefully".

(3.2.3) and (3.2.6) give us

N

3.2.8 Qp = V2 aNyLg(Beg - BVge)

To complete the expression for Qn’ we need to find Qs‘ Continuity

of the field across the oxide-silicon interface gives us the following:

d¢ = . do
3.2.9 €ox dx - €5 9x 4
x=0 x=0

The left-hand side of (3.2.9) is given by

d €ox
3.2.10 e Sl = Xy -4 )= -C (Vae - d.)
ox dx x=0 tox GS s ox' GS 3
Finally, Gauss' Law gives us Qs to be
= ig = - .
3.2.11 QS €5 dx - COX(VGs ¢s)

Thus we have

1

— _ i -

3.2.12 ox

LD
t

Now we turn to the calculation of d¢n/dy.
To find this, we relate ¢, to ¢s using once again the continuity
of field at the surface (x = 0). The right-hand side of (3.2.9) is found

by integrating the following initial value problem:

26
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( aN an.  B(o~Voe-9 )
—EA + "El e BS "n 0Sx<w
s 3
e
3.2.13 5 =
dx
0 W < X
%% = and ¢ = VBs at x = w.

Evaluation at the surface, x = 0, ¢ = ¢ gives:

S

-/l n:12 B(oe=¢,.) B(o_-Vae) - :

3.2.14 d¢ 5
A

dx

With (3.2.4) and (3.2.10), (3.2.9) becomes

V2 € n-JZ B(oc=0 ) 8(6 Vo) |
_ S - i F ¥n s BS’_
3.2.15 COX(VGS-¢S) = —EEE- [B(¢s VBS)+[ﬁ; e (e 1

which, after some manipulations gives

(BVGS-B¢S)2/a2-B(¢S-VBS)

3.2.16 Bo, = Bér - &n —
n F .2 B(¢s VBS)
| (e -1)
A

with

V2 €g
3.2.17 a-=s T T

ox B

With a¢n/ay obtained from (3.2.15) and Qn given by (3.2.12) Brews

writes (3.2.1) as
WuC 2

= —_OX -6 ) - -
3.2.18 I= =5 [B(Vgsmog) - alBog- Vg)

28(Vgemo ) + a do

Y
B(VGS-¢S)+a(B¢S-BVBS)2 dy

L
z . S




Rather than integrate this exactly with respect to y, Brews notes that
the second bracketed term (the fraction) will be important only when the
first becomes negligible. Since the first represents Qn’ it will be small

only near pinch-off. But, in this case we can write

2
28(Voe-o ) *a
3.2.19 e s T o= 1+ —
B(VGS-¢S)+a(B¢S-BVBS) 2(B¢S-BVBS)
Then
WpC 1 -1
3.2.20 1= —2% & [BVGS'%MS - 22 (8o -BVgg)® + 1+ a(Bo ~8Vpd " [0y

Integrating (3.2.20) from 0 to L one obtains the source-to-drain
current in terms of $sq and ¢SL’ the potentials at the source and drain
end of the channel as given by (2.2.27) and (2.2.30)

WuC
= [(l+BVGs)(B¢SL'B¢SO)-%[(B¢SL)2'(B¢SO)2]

3.2.21 I =
Lg

3/2 3/2]

2a - -
- —§ [B¢SL-BVBS) (B¢SO BVBS)

+ a[(s¢SL-sVBS)1/2-(B¢50-BVBS)l/zi]
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3.3 The Van de Wiele Model [11]

Van de Wiele uses a quasi-Fermi Tevel formulation for carrier densities
as in (2.1).

From (2.2) we see that his general surface potential equation is given

by
1
Zssqni .
3.3.1 0 = Vgs = [Tg | Flogse,)
with
3
B(o."Vpe=0,) B(otVoc=d ) Bér -—Bo
_ s BS "n F 'BS 7s _ - F_ n
3.3.2 F(¢s,¢n) =1e +e +[B(¢s VBS) 1]e e
Differentiating (3.3.1) with respect to g yields
-B(o +oc) B(Voe—d,)
do e N Fliosk(V..-¢ )+1-e BS 'S
n _ GS "s
3.3.3 — =1+
dog 2 2 B(Vgs™os)
B K(VGS-¢S) +1+ VBS-B¢S-e
where K = —ng(—
ZBqNAes
) -B(¢n+¢F) -10
Now, B(¢S-VBS) > ﬁ¢F > 11 and B¢F+S¢n 2 B¢F > 11. Thus e < 10
B(Voe-d,) -
and e BS 7s < 10 5.
Hence the following is a good approximation to (3.3.3):
d¢n _ ZB(VGS-¢S)+M
3.3.4 a¢— =1+ 2 5
s B (Vgg=0¢) “"MB(8~Vgg1)
2BagN,e
where M = 1. As
K c2

ox
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For the current, the same approach as (2.3) 1is taken, but with an

effective mobility Haff introduced:

L
3.3.5 &y . L
o M Meff
Hence
¢, (L)
3.3.6 I = - eff j Q, d¢,
$,(0)
where ¢, (0) = ¢F BS and ¢n(L) = ¢F+VDS-VBS as in (2.2).
Now we use
3.3.7 Qn = Qsc' QD
with
3.3.8 QSC = g x (field at the surface) = -COX(VGS - ¢S)
and
_ 28 QNA %
3.3.9 Q = s | (Blag-Vgo)-1)

(3.3.9) is equivalent to (3.2.8) in Brews' calculations.

Thus (3.3.6) becomes

O
3.3.10 I, = Peff”
D I (0)

L

By using (3.3.4), we find that:

28sqNA 3

g



3.3.11

3.3.12

A.M.E.T.

3.3.13

{

)
Ho-WC SL
- _eff “ox . -
ID - L J¢ B(VGS ¢ ) /M(B¢ BVBS 1)
S0
2B(V.o=9_)+M
1+ GS s

do
2 2 s
B (VGS-¢S) -M(B(¢S-VBS)-1)

LI,
i B LB ,2_ 2 3/2_g3/2
TP BUgs(0g) ~0gq) = 5 (65 ~¢50) - 3 Ba(A

¢
SL 28(V.a=0 )M
+ GS "s

r do
- i _ 112 s

(after much elementary tedium) we find

B (.2 _,2
—E = (81 (0g 050) - B (95 -05,) -
D W ueffcox GS SL 7SO 2 *7SL TS0

o8 (A3/2-63/2)40 (A 1/2-g1/2)}

2
3
{(¢SL 6530 (A1/2-81/2) 4

)
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Where
- _ 21
A=og - Vg "3
- - -1
B =950~ Vgs " g
2
= 1,0
C=Ves " Vgs "5 %3
%
_ (ZESqNA)
g = —osTAl
(0.4

The part in the first parentheses is equivalent to (3.2.21) of Brews.
Numerically, the second term in (3.3.13) is seen to be small compared to the
first. If the approximation of [11], egn. (3.2) is used in (3.3.11), it is
seen that only the first term appears in the final current equation. Hence
the Brews charge sheet result is an approximation of (3.3.13).

The derivation here of MOSFET current still depends crucially on the
result QD = -cCox(¢s-VBS-1/B)% as found in Brews (3.2.8). This is the step
which we feel has not been sufficiently justified.

The surface potential schemes presented in (2.3) are seen to be inaccu-
rate in some bias regimes. This is not a problem, however, since we can use
the full one-dimensional equation to find ¢SO and ¢SL (see (2.3)).

Thus we conclude that, with the exception of using the result (3.3.9)
for QD, the Van de Wiele derivation of drain current is based on assumptions
and approximations which are nowhere too harsh. If the result (3.3.9) for
QD were confirmed, then this model would be virtually optimal as a closed

form of the one-dimensional Pao-Sah model.



3.4 The Clinic's Model

In the following section, we will give the details of a model derived by
the Clinic which gives the drain current in all regimes of operation. It has
not been possible to do a complete test on this model since the approach was
devised very late in the semester. Some preliminary numerics do, however,
indicate that this is certainly a valid model.

The strength of this model is in that, unlike previous models it does
not use the same approximations over the whole range of operation of the
device (a formidable task), or even, in fact over the whale device.

We have divided the device into regions A, B, and C . A full
description of these regions is now given, together with various
approximations valid therein.

REGION A

This is defined by
(3.4.1) o > 9+ Vpo *+ o .

In this region, the surface is strongly inverted.

Let's look at the relative sizes of charge densities in the region.

B(®-Vye-9 )
(3.4.2) hn=n.e 551

(3.4.3) N, = n, e

B0, +V,c-0)
(3.4.4) p=n,e = B

Since we make comparisons with NA’ and ND << NA’ we need not consider

- B¢F

5
Note that °s > ¢F + VBS and e > 107 .

33 .
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g
At the surface, n > n; e F, and thus n/NA > 1. Also we have p < n,
-Bd _
8o <n e ', and thus p/N, < 10 10

B ! Hence n/NA-p = n/NA.

Now consider a point at depth X; beneath the surface where ¢ falls to
~-Bo -go
F

. . n
the value VBS o . At this point p/NA = e and n/NA = e ; hence
5

both are less than 107 °. (Still we have n/NA-p = n/NA.) This should now
suggest the basis of the new approach.

Seeing how dramatically n/NA-p falls off between x=0 and X; , We are
Jjustified in assuming that the contribution of charge due to electrons comes

almost exclusively from the region 0 < x < Xy

The charge in the device below X; is given by the field at X5 s namely

-1
2gn. _|?
de _ - is
€s E?lx=xi - [ B J F(o,*Vgss2y) -

In the function F , the significant terms are:

B(O-Voe=® )  B(®p+Vgc-9) 1)
e BS "n ;e FBS H (B@-BVBS-l)e F

At x = X5 » We have that:

B(e-Vgs~ 2) L0t Vpsm @) B(ep=0y)

e =1 <1

and

8o
(8 (2-Vg)-1)e

8o
= (82, -1)e

go

F
2 (B¢F-1)e

F F

> 10°

Thus at x = X;

8O /2
(3.4.5) F=e /88 -1



35

In fact, neglecting the first term amounts to neglecting the contribution
due to electrons.

Thus we have

L
(3.4.6) 0y (4 - i o s_1 Bo -1,

the charge beneath X; due to NA-p. We will refer to NA-p as depletion

charge.

Finally, we use the fact that the potential drops off rapidly as x
increases from zero. This allows us to neglect the contribution of depletion
charge from the region 0 < x < X3 .

Hence QD is a good approximation for the total depletion charge in the

device, and using Gauss' Law we find Qn , the charge due to free electrons:

(3.4.7) 0,(A) = Qg - Qp(A)
Now we use Qg = & gg-(x=0) = ~Cox(Vgs-2g) to obtain
_ZQNA £ 3
(3.4.8) Q,(A) = 5 VBo,~1 - C (Vagdg)

We now make some definitions to be used throughout this chapter.

Definition 3.4.1

At any point along the channel, the region 0SX<X4 is defined to be the
inversion layer.

Definition 3.4.2

At any point along the channel, x = X5 is defined to be the depth at

which ¢ =YV + 9

BS n "’
Now let us move on to

Region B

(3.4.9) o <o - Vg S0 + 0

BS F
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Once again, we approximate the depletion charge beneath X5 by

(3.4.6).

Now, however, the inversion is not as strong. To account for the
possibility of significant depletion charge in the inversion layer, we do the

following calculation. «
-8 (¢-Vp¢) B0

We still have p/N, =e <e < 1077

hence if we can find

X; ,then the depletion charge in the inversion layer is just 'qNAXi .

X *a*Vas *a*Ves
1%
= = db = Bcs de
(3.4.10) X4 dx db [éqni -F(#,9 )
dx
)0 4)5 ¢S
*s
1
Beg |* 1 do
(3.4.11) Xj = [ani Fle,e ) °
*n*Vas

The significant terms of F are, once again:

B(8-Voe-0 )  B(S.4Vc-8) )
(3.4.12) e BSTN o UFUBS TN gougu -1y e

For ¢n+VBS<¢ < @S < °n + °F +VBS we find that:
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B(0-Vo-0 )  B® B(d.+V,e-0)
. BS™n) F L o UFBST g

o 8O Boc
(B¢-8VBS-1)e > (B¢F-1)e > 1le
If we retain only the third term, then we find that in the worst

possible case (@n = @F-VBS) and at the worst end of the integral, we have:

1 1
F(approx.) F(Correct) _ 0.04
l - .

F(Correct)

Thus the approximation of keeping only term #3 is not at all too harsh.

Hence the extra depletion charge is:

¥s
X

(3.4.13) Be 5y
.qNAxi o~ = QNp 33“; (p¢-pvas-1) $

$Vgs

(3.4.14)  -NygX; = -2 ( Vpo -pVpe-1 - vpe -1)

-1

2
29N, €
where @ ——TfliiJ

Thus in region B, we approximate Q, by:
(3.4.15) 0,(8) = -Co (Vgs-2g) + 9 VB(3,-Vgs)-T

which is precisely the form used in Brews and Van der Wiele.
NOTE: We have derived this as a result of approximations which are only
valid in region B . The approximation for X; fails totally in region A.

Finally we look at
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Region C
(3.4.16) o - VBS <o
This is the pinch-off region. The potential has fallen below the effective
LY
Fermi-level, and thus the electron concentration is very small.
In this case, it is possible to evaluate Qn directly.
*
X . 'Qs
e i Ble-Vge2,)
= - 2 - S e d@
(3.4.17) Q,(C) q | n(x,y)dy = -qn, 2an F(.5)
Jo
J
$:*+Vgs
The Tower limit has been set to op + VBS but this is subject to
debate.

Referring to (3.4.12) we see that since o + VBS <o <o <o +VBS ,
the first and second terms of F are both less than one, whereas the third is

6

at least 10°. Thus we neglect all the terms of F except the third.

Then Qn becomes

®

S
71'2
B(e-Voc=¢ )
n, BS
(3.4.18) g (c) = Bqﬁ;es e s
P || (plegg)
Japevg

This approximation for F is still good if the lower limit of

integration is extended to %¢F + VBS'
Under the substitution tz = B(@-VBS)-I, this becomes:
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(B(2-Vge)-1)"

2qn.e 1-p® 2
(3.4.19) Q,(C) = -Eﬁg—ii e " ebdt
F
Be

%

}(pop-1)"

Since o, < VBS-Qs’ the equation for surface potential,

(3.4.20)  Vgg-9¢ = K{e

becomes essentially independent of ¢n , and thus °s will be constant in the
whole pinched-off region, and the numerical integration in (3.4.19) need
only be done once.

This concludes the discussion on Regions A, B, and C, in which we found
simple expressions for Qn' How do we find the current? Most generally,

under a given set of applied voltages, parts of the device will be in each of

the 3 regions A, B and C.

The current is given by

¢ (L)
_ouW
(3.4.21) I =- %7 Qde,
¢ (0)

Since we have three different expressions for On , it will be necessary
to split the integral into three.
Consider a typical case where the source is in A , the drain in C ,

and a portion of the device in B .



The boundary between regions A and B is at L

* * - -
¢n’ °s = 05 . This 1s

defined to be the point along the channel where LB becomes equal to

9, *+ 9 *+ Vg (by (3.4.9)).
Thus to find ¢: we must solve the implicit equ

* *
L : =
with ¢S ¢n+¢F+VBS. Namely

3. '.22 - - -
oX

The boundary between regions B and C is defined
o =0 ¢ VBS . When the drain is pinched off, the s

S
pinched-off region is constant and thus equal to ¢

ation (2.2.7)

) = __._ 1_ * *
BS B | T, Flen*eptVpsee) .

to be where
urface potential in the

Hence this boundary

st °
is at o = QSL-VBS .
Thus the current is given by:
*
- PstVs  2all)
_ W
(3.4.23) Iy =- 85§ 1 Q(A)dey+ [Q (B)ds, + [q (Ce }
{ Jg (0) J >
n * I "Vgs
Now we do the integrals.
* *
*n *n
(3.4.24) Qn(A)dcpn = | [Qvpe-1 - cox(vcs-és)] ¢, or
2,(0) ®,(0)
* *
*n g
d@n
(3.4.25) Qn(A)de, = (VBT - VBETO)-) - Gy | (Vgsmdo)gg” d2
2,(0) %50

40
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To evaluate the second term of (3.4.25), we use the approximation for

4%, used by Van der Wiele (3.3.4) . The integral thus yields:

d¢s *

®n

(3.4.26) Qn(A)dcpn = sz(\/éop;-l - vge,(0)-1)

2,(0)

C *
- -B% (BVgg+2) (Bo}-pogy) + 3 B (go-2g )

B2 (eg-Vgs)? - M(peg ~ V1)
B (agg~Vgs) = M(Bogg - BVgg-T)]

M
+28n

* M M
athdg-pVps-p | a-Beg*BVps? ET
M M|

- aén =
a-pes Vgt 7 AtPEge Vg5 7

2BgN, e
where M =——/2‘-i ,
cox
and a = M(n-+ BV.e-BV, -1) -
4 GS ©'BS

The integral for region B is precisely that derived in Van der Wiele

(3.3.13):

)

$s1-Vgs 251

de
3.4. = ..
(3.4.27) 10,(8)de, = \q, ()55 as
* *
@n @s

where
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®s1-Vs
-4 0n(B)dey = = == $(BV g 2ag -2g,) - 2 (g ~%50)
¢*
n
3/2 372 1
2 /2 172
+§°B(A -B )Y+45(A -8B )
1/2
$e,-c A -
v o2onl LTS Yes
Pen-0 B]/z- v
S0 GS
172 172 172 1/2
) /2 A -¢ - % B +¢ / - g
+ c
¢t M AT X Ty
where B -C -2 A +c -2
A=a. -~y _ .1 ¢ ?
SL BS T R
B = - -1
®s0 = Vgs - 3
2
C = _l,o
Yos ~Vgs -5t 7
\/2
5 =(ZESqNA)
c_
oXx
Finally, the pinch-off contribution is given by:
s (L) (o, -Vge)-1)%
n Pleg -Vgg)-1)
- % f
2qn.¢ B(Voe®c, ) -po (L) 2
.4, = 8 i’s BS "SL n
(3.4.29) Q,(Chae = £ | o -e et dt
e
Jp .
®s.-Vas H(pop-1)"

Thus (3.4.23) , along with (3.4.26, 28, 29) given the drain current

when the source is in A and the drain pinched off (C).

If the drain is not pinched off, then the B integral goes all the way



to the drain, i.e. to ¢n(L) or ¢SL » and the C integral is omitted.
Similarly if the source is in region B, then the B integral starts at

¢n(0) or é¢, and the A integral is omitted.

Evidently this means that a single current expression is not obtainable
by this approach. However, in each portion of the device, the equation giving
the contribution of current is simple.

The contribution of current from region B of the device, is precisely
that of Van der Wiele. It should be noted that the approximation we used to
obtain this result breaks down when the device is strongly inverted (region
A). It thus seems that a 'best' simple approximation in region A will not
yield the Van der Wiele result. It is our belief that the treatment of region
A in this report should turn out to be more accurate, but this MUST be tested
numerically. A numerical testing of the various expressions for Qn will have
to be a very careful one, since in strong inversion the boundary layer at x=0
caused by the high electron concentration there will create problems for a
general algorithm.

In conclusion, the strengths of this approach are that different
approximations for Qn are used through the device, depending on the level of
inversion. The inclusion of a pinch-off term is also a much needed addition.

To fully complete this model, one of the following is required. Either
a numerical testing which shows the value of Qn to be accurate in region A,
or a method of finding an integrable approximation for x. , the inversion

3
layer thickness.
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IV,  SOURCE AND DRAIN MODELLING

4.1. Purpose and Preliminaries

In the explicit formulae for drain current used by previous clinics for
parameter extraction, the contribution of source and drain regions was limited
to the inclusion of VS (the potential at the source, usually grounded) and

VDS (the potential at the drain) in the derivation of %5 and ¢ the

K
potentials at the source-end and drain-end of the channel respectively.
Theoretical and experimental evidence suggest that this approximation is
acceptable for Tong channel devices, but that it is one of the sources of
disagreement between predicted and measured current in small devices,
particularly when they are operated at low gate voltage (VGS < 2) and
negative substrate bias (VBS < -2).

This year's clinic has contributed a more accurate analysis of source and
drain regions and it has at least in part achieved the goal of incorporating
in the drain current expression two quantities which were previously
neglected:

- the source and drain doping profile;

- the ratio between the depth of the channel and the depth of the source
and drain regions.

This result was achieved by applying variational techniques to determine
the potential close to the ohmic contacts and methods of complex analysis to
obtain the so called crowding resistance. We shall present here the source

region analysis. The computations for the drain region are similar and are

therefore omitted.
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Figure 4.1.1

Figure 4.1.1 displays the two regions into which the source is divided.
At the boundary'PQ between the two regions the flow lines are assumed to be
perpendicular to PQ. Region I is the ohmic contact area of the source and
Region II is the crowding area. We shall pfesent an analysis of Region I
first.

4.2. Ohmic Contact Region

Figure 4.2.1

Figure 4.2.1 shows the partial differential equation and the boundary
conditions satisfied by the potential ¢ in region I. We see that at the
ohmic contact [-r;0] we have a Robin type boundary, while at the insulating
boundaries the conditions are of Neumann type. The probiem suggests that the

potential & minimizes the functional



4@ e ¢ too

(4.2.1) T(e) = l|v4>||2dxdy + A d>2(0..‘/)dy

~oo 0 -0
7/ /

with A=0 outside of [-r 0].

A first attempt at minimizing (4.3.1) can be tried by assuming that ¢

is x-independent. We then obtain

+o0

(4.2.2) (a¢§ + 32)dy = T(8)

Therefore, using Euler's equation, we obtain

eEd,. - A =0

Yy
or
(4.2.3) JEy /Yy
¢ = Me + Ne in (-r,0)
& =ay + b in (0, + «)
{ @=cy+d in (-=, 0)

The constants M,N,a,b,c,d, need be selected so that the boundary conditions

and the continuity requirements are satisfied. We obtain

A cosh (\/gws) in (-r,0)
(4.2.4) &(y) =4 kéy + b in (0, + =)
d in ('“’0)



The four constants A, B, b, d satisfy the linear system.

( Acosh B =bh
V2 A sinh B = ks
(4.2.5)
{ A cosh (- % r+B) =d
2
V F Asinh («/ Er+B) =0
|
Therefore
(4.2.6) [ B = 2

This approximation is obviously not optimal.

A better approximation to ¢ can be obtained by assuming

(4.2.7)  e(x,y) = my) + Gy (x-o)

Then m and n satisfy the systems of differential equations

(m+n)

™ | >

(4.2.8)

|=

(mén)

(A
o |>

l 3e
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for X F0 (in (-r,0)) , and
{ mll + % nll = 0
{
(4.2.9)
[ m" + % n" = —52 n
3e
for A =0 (outside (-r,0)). Setting

u-=. /15 y and s = /7£ r

we obtain
1 _
w T3 My TME
R I U S
3 My 5 My ™ 3t *rm+n
in (-s, 0) and
~ 1 -
m,, * -§nuu 0
(4.2.11)
o m + é = i n
uu 5 uu e\

outside (-s,0) . Taking into account the boundary conditions on ¢y we have

(4.2.12) (




in (Oa + °°), and

[
(4.2.13) ,_iz(”*”
1 C.,e
32 +

m=-

in (-= , - s).

In (-s, 0) the system (4.2.10) gives the following algebraic equation

for n
4 15y 2 . 15 _
(4.2.14) 5§ - (6+ex) §° + — 0
For X < <1 we have
~ [a 5
6y = %+5 +... 5, \/7\__11a +5 +.,
53& 1 8§, ~ -1
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Accordingly (6 = /—i% )
(4;2.15)

rn(u) o A]ee“ + Aze-eu + Azet + pgel

1 Bu 1 - ou 2 u -u
m(u) >~ -= Aqe - = Ase - £ (Ae¥ + Aje
I (u) 3 1 3 2 eX( 3 4 )

Continuityof m, m ,n,n at u =-s and u = 0 gives the following
system of 8 linear equations in Al’ AZ’ A3, A4, 82,83, CZ’ C3.

.

Ayt hp v Ay + by =8,

1 1 2 2 = 1

Ay + 2 A, + £ A, + £ A, =28, -8

31 3 2 723 63)\4 3 2 3

4 (u=0)

e(Al‘Az) + A3 - A4 = "GBZ
Loca;-a,) + 2 (As-A,) = -leB,-ks/%
5 ) = 5 (sh J98kery

[ -6s os -5 s
Ale + Aze + A3e + A4e = C2

1 - 0s 1 6s 2y ~S, 2 -1
ﬁAle + -3-A2e + s_)/\\3e +8_)\A4e S = 3(22-C3
-6s -06s -5 S (U=‘S)
B(Ale - A2e ) +A3e - A4e = OCZ
lgg o 00, 08 5, s s
~0(A - A £ (A - A = 26
3 (Age 22 )t 5 (Age - Age ) = 8
Witha=1-2 b=ks /T  we find that
3 e
_ b _ 2s
A4 = — B3 = aA4(1+e )
a(e -1)
_ 2s
A3 = A4e BZ = A1+A2"‘A3+A4
Ay = a0 L "o A ’
2 T TAye 2 T A1 - Ape
2s _ S
Ay = Ay (1-8)-e  (1+9) U3 = 22 Age

20



1 — —_—
A1 o~ + 7 kSeVer BZ o~ - % k&eVex
15
1 . 'S(1+ ?):) /e
A2 =~ kSeVen e B3 ~ k&V A
5,
1 — - )\8
I-\3 ~=-7 kSeVer C2 e%— kés\/age + e's
1 _ -2S -S
A4 ~=- % kSeVel e C3 ~ Zkﬁ/é e
Consequently
[0
Ay a
| % VEE X
| 1, /x
.2.16)  $(x,y) ~ { i kev— |e (12 % - 6(x-s)2) + e (3(x-e)2-52) if -r<y<0
s - -VI5 £ V15 &
SH 12/-; + 12y + eVex e -3v/_§ e (x-c)2

The neglected terms are exponentially small.

The current outflow is (y = 0)
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£

4,2.17 & dx = ks

( ) y X kSe
0

The current inflow is (x = 0, ye[-r,0] )

0
(4.2.18) & dy = kse LI, v
T X V1
-r

and we see that the two flows agree in first approximation.

The current inflow is concentrated in a boundary layer near y = 0. There
are two layers, whose heights are ./ and whose widths are /g and ¢ respectively
(see figure 4.2.3) . The solution is independent of r and the current
enters (or leaves at the drain end) at the corner where the ohmic contact is
closer to the channel. Hence we can assume that r =« . The current lines
are represented in figure (4.2.4).

We can now compute the resistance between the equipotential Tine (¢=0)
AB (see figure 4.2.1) and the equipotential line PQ. Without going into the
technical details (see [8]) of the calculations we shall simply mention that
the resistance R1 is given by

-1

-1 _ |° [— 2 -1 dc
(4.2.19) Ry JO LJ[V@I (og0,) "dy + pC(VQ)X=9J

where o is the silicon conductivity, Pe the contact resistivity, and
where the inner integral is taken along each current line, ¢ = c, from
the region PQ to the contact. (v 1is the harmonic conjugate of the
potential ¢.)

We then have &(PQ) - ®(AB) = R,I and since @&(AB) = 0 we obtain

1
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(4.2.20) ¢(PQ) = RII

4.3 The Crowding Resistance

As stated previousty, this section will be concerned with the analysis of
region II (see Figure 4.2.2) for the purpose of finding the crowding
resistance, namely the resistance due to the distortion of the current lines
near the junction where the source meets the channel of the device [9].

Here we will make use of the Schwarz-Christoffel transformation, [12]; a
conformal mapping technique which maps the interior of a polygon in one plane
into the upper half of a second plane bounded by the real axis and an infinite

arc, or vice versa.

4100
7 z-plane
e K ———yr

V=TT V-’% v=0
b4
: /“é‘ N ‘N
A s/ 0 \¢ D %

€&~h—o

-3 00

Figure 4.3.1
Figure 4.3.1 shows the geometry of the region we are interested in
transforming with the Schwarz-Christoffel theorem; Figure 4.3.2, instead,
contains the plane of the straight Tine into which the boundary of Figure

4.3.1 has been opened out:
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y‘I
z,-plane
i)
4
X4
Figure 4.3.2
The differential equation:
1.
: "2
(4.3.1) 42 (-2 1 ca®
et gz, T € 2 s 2 2 2\ 2 N
1 zl(zl'l) [(Zl‘])(zl'a )]2 Zl[(zl'])(zl"a )]

is the expression given by Schwarz and Christoffel for the ratio between the
two infinitesimal vectors dz and dzl.

Letting z, = Re'® , the two constants ¢ and a

can be obtained through the
evaluation of the following integral:

1T
s
\ L
ple2ia_ 2 \? .
(4.3.2) dz = ic - da = %iC ada
\R2e21a-1
J+h 0 R--0 0
and
-~k _ o i
(.2 2ia 212
R"e -a o ui
(4.3.3) dz = ic L—E—ETE——pl da +ic da .
R7e"™ -1
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and ¢ = %% obtained from

x>

Substituting into (4.3.1) the expressions a=

(4.3.2) and (4.3.3) and integrating, we get:

2 2 2 12 %\}
1% " -1 “21
(4.3.4) z = 2 k tan Wi ) h tan a\ 5>
b 2
1 - Zq z,-a

t .
Set W = U+iV (with U the potential and V the current flux vector) and W =
1nz1 or zy = ew ; then clearly Figure 4.3.1 the current lines follow the
right and left boundaries of the strip from top to bottom giving a total

current I = % » S being the resistivity of the strip.

Substituting Z, = ew and observing that the line of flow along the y - axis

is V = % , we find:

‘l/ 25
" a1 | ea? |” -1 1+ e2Y)°
(4.3.5) y = 5 k tanh —;:;75 - h tanh a T

By equating (4.3.5) to zero, we obtain that the potential VO at (x=0, y=0)
must be approximately equal to A\a when a << 1 . The value A= 0.308705435
has been computed for the parameter X\ using Newton's method to solve the

equation:
1
1
(A241)*

o

(4.3.6) tanh (A%+1)? =

derived by equating (4.3.5) to zero with U0 = Tnia.

The exact value for U0 is obtained as an inverse function by setting

1
E?u 2% 2,.2
e”"+a x~+a
X = . Then U =;Jn-———?- )
e2U+1:l ° 2 E-x J

The substitution of x into (4.3.5) with y=0 plus a Tlittle algebra gives
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the equation:

Yy
Tx _/x-ay ®
T+x x+a
that we solved using Newton's method with values for a in the interval

(0.01,0.034).

Table 4.3.1 shows the numerical results computed for

(4.3.7) UO = InA\a and
-
2 2
(4.3.8) U = 11n|% azJ ,
°© 2 1 - x

given the values of A, a and x.

Now Tet U1 = U(+=) . With this assumption, equation (4.3.5) can be

transformed 1into: )
on 2U

! 1
1. 2
(4.3.9) y, =% k tank” —zizn—*—i—> h tanh! G Ze +1

2U
2e 1 +1 2e 1 + a2

along the wide part of the strip, or
2u,

1 e ha |
(4.3.10) Ye =3 k 2n 1-a2 - h en a

>

2kU 2 2kU
1.1 Ak k+hi_ 771
PO [_F &n — 2 h én k-é}— e

where A =

E R
x
(Y
3

5 5 n h . Hence

(4.3.11) U, = — (v,-A)
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Finally, the total resistance of the wide part of the strip in Figure 4.3.1

not connected to the narrow one is given by:

R _1 i = Rk A )
(4.3.12) r K (yk-A) - Uo S + ( 2K Uo

and, since region II of Figure 4.2.1 is exactly one half of the region in

Figure 4.3.1, (4.3.12) gives the total resistance also for region II, with

%5 the resistance of only its wide part and 2% - U, the crowding
resistance.
We find:
(4.3.13) R

Crowding resistance =

: 2
-1 4h~  _ kth +
Tk {:k en kz-hz h én k-h:} U0

In particular for a<<l we get:

L
24 2
4.3. = Ah h h
( 3 14) Rc (an + £n K + &n <'|- -k—z-) + 5

k
L

2 |-

Table (4.3.1) is a comparison between exact and approximate values of both R
and U,. Figure (4.3.2) illustrates the relationship between Re » Uy and a
for the exact and approximate cases.
4. Remarks

The procedure described in 4.2 , 4.3 allows us to compute the
resistance, Rg , of the source region and to express the surface potential,

®g9 » at the source end of the channel as product of RS and I . In doing



so we obviously make an approximation, which is valid at least as long as the
charge-sheet model holds. We therefore gobtain
(4.4.1) &g =Rl .
A similar procedure at the drain gives
(4.42) Vpg - o5 = Rpl
where Rp is the resistance of the drain region.
We can now eliminate &gy and @g; from the explicit formula of Ip and

we obtain an equation which defines Ip implicitly.

(4.4.3) ID = G(IDRS’IDRD’VGS’VBS’ ..... )

This may seem a big step forward at first glance, but we would like to recall
that Rg, Rp contain the crowding resistance based on the device geometry and
specifically on k , the ratio between the depth of the channel and the depth
of the source and drain regions. Therefore k will usually be different at
the two ends and k=0 at the drain end when the pinch-off regime occurs.
Thus the surface potential plays an important role in determining the value of
k. Nevertheless it remains the fact that the doping concentration of the
source (drain) region and the crowding at the two ends of the channel have

made their first appearance in the drain current expression.
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V. NUMERICAL RESULTS

In sections 5.1 to 5.4, we will describe the numerical algorithms which
the clinic used for the evaluation of surface potentials (¢SO and ¢SL)
in the various models, followed by a numerical comparison, noting accuracy
and efficiency.

Section 5.5 gives some notes on the parameter extraction procedures.

5.1 Exact Surface Potential

It should be pointed out that all the models mentioned in this report
calculate %sq and ogL from the same basic one-dimensional model. The
'exact solution’' is the one which uses the full 1-D equation in evaluating
the surface potentials. The others use approximations to it.

The equations to be solved are those of ch. 2.2, (see 2.2.10) namely

5.1.1 o = Vgg * oF(0) = 0

with F given by

B(x-VBS-¢n)+eB(¢F+VBS-X) BoF ‘B¢F]_GB¢F -89,

5.1.2 F(x) =Je +B(X—VBS){G e

and

To obtain ¢SO we solve 5.1.1 with ¢s = ¢SO and ¢n = ¢F - VBS'
For ¢g ~We use ¢s = ¢SL and ¢, = VDS + ¢F - VBS‘

Newton's Method was used for the solution.
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The Newton parts of the algorithms for ¢SO and ¢SL are the same,
so only the general case will be explained with ¢s = X.

The function. whose zero we seek is

5.1.4 G(x) = x - V.o + a F(x)

GS

The derivative is given by

5.1.5 G'(x) = 1+ H{xX)

with H given by:

B(x-Vpe=0 ) B(d+Voe~X) Bér -Bo
5.1.6 H(x) = Ba(e BS "n -e F'BS +e F-3 F)

Newton's algorithm, then, becomes:

G(xk) ) 2F(xk)G(xk)
i)

= X, = =T
k G (xk)

5.1.7

X+l =X T 2F (%, )HH(x

The Fortran Statement Functions actually used are as follows:

5.1.8 FSQ(x) = eB(X_VBS_¢5)+eB(¢F+VBS_x)+s(vaBs)(es¢F-e-B¢F)-eB¢F-e-B¢"
5.1.9 F(x) = DSQRT(FSQ(x))

5.1.10 G(x) = x = Vg + a F(x)

5 111 HEx) = B(eg(*-VBS'¢n+Q"a)_eB(¢F+VBS'X+ln“)+eB(¢F+£"“)_e5('¢F+2n“))

In the function H, the ena term in each exponential is equivalent
to multiplying the expression by a. By using this form, however, the size

of the exponents is reduced, minimizing the risk of overflow.
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The general form of the curve G(x) 1is given below in Figure 5.1.1.

A G(x)

S

Figure 5.1.1

The key to a successful algorithm based on Newton's Method is the initial
guess for the zero. Which criteria should we use?

It was found that Newton's Method could be made to always converge
for the parameter ranges given in (6.3) under the following scheme. Suppose

we are given some starting value, x. Then:

5.1.12 i) Increment x by 0.25 until FSQ(x) > O
ii) Increment x by 0.25 until G(x) > O

iii) Use Newton's Method.

The starting value for was given as 0. ¢SO is generally positive

%30
but can be Tess than zero. Thus an initial value of 0 will normally converge
faster since we do not need to step up through all the negative values.

The starting value for ¢g Was given as 5o Although the approxi-
+V

mation might seem natural, it is not practical. When

%L = %0 T Vps
the drain is saturated, the approximation is very bad, and the starting
value will be much too high. In this case, it is observed that Newton's

algorithm will often converge to the wrong root - the left hand zero of g.
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If the bounds on the parameter are changed substantially, then the
surface potential calculations should be checked over the new range. The
easiest way to do this is probably to make sure that G'(x) is positive
at the root.

If_the algorithm does fail under different parameter ranges, there
are a few things which can be changed before the need to panic becomes
apparent!

Firstly, convergence of ¢SO is better guaranteed if the initial guess
is set to VBS instead of 0. (With the parameter bounds given in this
report (5.5) convergence is guaranteed.)

With this change should also come the following: instead of incrementing
x until G(x) > 0, do it until G(x) >0 and G'(x) > 0. Then it will
not be possible to start close to the wrong root.

Another possible reason for convergence to the wrong (left hand) root
is if the increment in x 1is too large. Thus use a smaller increment in
steps i) and ii) of the general algorithm.

The checks and changes mentioned above are not included in the para-
meter extraction routines as they stand, since the algorithm always converges
for our physical bounds on the parameters. Each sophistication costs time,
and since the programs take a good deal of that commodity already, we have

kept 'extras' to a minimum.

5.2 Approximate Surface Potential (Brews)

The Brews Approximations amount to the following:

replace the functions in 5.1.8 and 5.1.11 by



B(x=Vpe= ) 1)
5.2.1 FSQ(x) = e B N B(x-Vge)e F

B(x=Vye=9, ) R
5.2.2 H(x) = e B5 M 4 F

Then define the functions 5.1.9, 5.1.10, and the algorithm 5.1.12 is
seen to converge.

There is little point in using this algorithm for Brews' surface poten-
tials in a program, however, since the precise solution requires virtually
no extra effort and convergence is the same.

A comparison of Brews' results to the precise solution is given in

5.4.

5.3 Approximate Surface Potential (Wiele)

Van de Wiele's solutions for surface potential at source and drain
ends of the channel are extremely simple to calculate but unfortunately,
not very accurate. A crucial first step is the determination of the in-
version level associated to a particular surface potential. The condition

for strong inversion is given by the relations

VGS >> VT and jOint]y ¢n + VBS = ¢F < Vl

Py Y
2 - ana)? - § an( (31%+v_)3-4x)

5.3.1 v

- 1
1= Ves 2¢0p + 3A 0)

- - 21 - 3
Vo=V v 5 X = (26 QNy)/C



and the threshold voltage, VT’ is given recursively by,

.L

i+l 1
FB~ BS B) + 8 an B +

T

2

5.3.2 v = VFB + 2¢F "+ A(4A +V -V

e

2

1,3
8 V-V =)°)

an(=2x+(32 +V FB” VRS ~ B

T

(see [11] eans. (14), (13), (17)).
A simple Toop is used to find the threshold voltage for each combination

of V and V

GS BS®
When the relative error between consecutive jterated values of VT
falls below 10°%% it is assumed to have converged to its limit. If it

is determined that a condition of strong inversion exists then the Van de
Wiele strong inversion approximation is used. This approximation is a re-
cursive one and given by
i+l

5.3.3 b TPt o, 7 )

¢ Lan(s(0)?) + £ an(uggool)

BS
(See [11] eagn (9)).
Here again, a relative error of less than 10-6% between iterations is taken
as proof of convergence.

If the conditions for strong inversion are not met, the weak inversion

approximation is used. This is given simply and nonrecursively by

2

1
5.3.4 ¢ = V.a + 327 = A(3A +V )2

(See [11], eqn.(12)).
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5.4 Comments (numerical comparison)

As Van de Wiele uses the same formulae for the surface potential at

the source and drain ends of the channel we may use the same approach for
calculating either one. The only difference between source and drain end

of the channel lies in our value for ¢n. At the source end we take $n ©

$p - VBS whereas at the drain end we take ¢, = ¢F - VBS + VDS‘ The Van

de Wiele model has the advantage of being computationally direct, involving
Timited logical checks and only simple loops. Unfortunately, this simplicity
is at the expense of accuracy. Two runs were made, each for a different set

of parameters. For run 1: x = 2.312, ¢p = 4, C0X = 6.9x 10'8. For run 2:

8

X = .4042, ¢ = .35, C__ =23x10°°. 4 and ¢ were calculated through
F X SO SL

0

the following range of voltages: 2 < VGS <5, VBS 20 and -2= V,. = -5,

BS -
1< Vae =5

DS = 7

Each run compared the potentials calculated by the Brews and the Van de
Wiele models with the potentials calculated by the exact, Pao-Sah model, for
each possible set of voltages, and expressed the difference in terms of a
relative error. For the accurate measurement of error, the height of b
above VBS must be taken into account. Thus the expression for relative
error becomes: 100 x (¢ (EXACT) - ¢, (APPROX))/(¢ (EXACT) - Vgs)

In the first run, Brews' approximation yielded an RMS error of .3% and
.5% for $5) and dg. respectively. At no time did the error rise above .7%/1.6%.
The Van de Wiele approximation was not quite as good vielding an RMS error of
1.4% and .2% with maximum errors of 5.3%/1.2%. For the second run, Brews showed

0% RMS error in %50 and b - There was only one instance of non zero error

which was an insignificant .1%. Van de Wiele returned 1.1% and 3.9% RMS errors
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with individual cases as high as 2.4% and 7.7%. Clearly then for the pur-
poses of parameter extraction, the Brews approximation shows itself to be an
excellent one with almost insignificant error, The Van de Wiele approximation,
while not as good, is still reasonable for X = 2.312. However, for small X

(A = .4042) errors become noticeable and its use becomes guestionable.

5.5 Parameter Extractions

The parameters used by last year's clinic with the Brews model have been
modified by the clinic. Previously it was the case that 2 of the parameters

each contained two required quantities. Namely
Py = P1(%)

5.5.1 p2 = P2(¢Facox)
pg = pgW/L,C )

Since $ps Cox’ and W/L are the real quantities we wish to find, we have

set the new parameters to be:

P17 %
5.5.2  p, = C,y
Pg = W/L

What bounds should be put on the paramters? From physical considerations,

we have the following:

5.5.3 0.29 < ¢p < 0.41V corresponding to 10]5 =N

-0:95:5VFB < -0.8V for n-channel ,

A

-0.3 = VFB = -0.2V for p-channel
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W and L are given for each device. Acceptable bounds for W/L
would be 10% to either side of the given value.

For the Brews and Van de Wiele models, the full one-dimensional solution
for surface potentials is used. Also, we have coded Van de Wiele's approxi-
mate solutions in the hope that they may be more computationally efficient.

A comparison of the various surface potential calculations was given in 5.4.
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6. CONCLUSIONS

The new formulation of drain current given in (3.4) is, we feel, more
acceptable than those previously derived. If an approximation of X; could
be found in region A, then it would be complete. As it stands, however, the
importance of such a correction is not known. Tests should be carried out
comparing the approximations for Qn with numerically computed values--this
should also be done for the Van de Wiele model.

What is it about this model which is more acceptable?

Firstly it includes the contribution of current from the pinched off part

of the device which is not seen in any of the other models we have looked at.

Nj

Secondly, in the Brews and Van de Wiele models, the result QD = K{B(¢S-VBS)-1)}
is used for the depletion charge. This result is the same as the clinic's
model in region B, but look at how they calculated this value. Firstly, they
assume that all the charge not due to electrons is due directly to the doping,
NA’ and that the depleted region is uniform to a depth W, beyond which charge
neutrality exists. Thus they solve the equation eg d2¢>/dx2 = q NA. In fact,
as we go down into the bulk of the device, the hole charge, p, increases con-
tinuously and only asymptotically to the value NA’ which gives charge neutrality.
The boundary conditions they use at the surface are those of the full 1-D Poisson.
Hence this approach would seem to neglect the sharp inpréase in the actual
potential near the surface caused by the inversion layer electron charge. The
clinic has not been able to justify the use of this approach for finding QD'

In our model we allow all the charge distributions to be continuous, and

do not lose the inversion layer structure.
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Brews claims that his model is valid in all regimes of operation. Numeri-
cally, this is notwhat we find. By using parameter extraction, we can get a

good fit to wide ranges of data. However, there are certain combinations of

voltages which without fail cause large errors. MNotably VGS =2, VBS = -3,-4,-5,

The departure of the model from reality in these conditions can be by 30
or 40% compared to less than 5% for most all the other voltages (for one given
fit to data). It would thus seem reasonable to assume that the model is having
trouble fittingto these particular applied voltages. The reason for this may
be that his model uses a single formula for Qn whatever the operating condi-
tions atany point in the device. The clinic, however, splits the device into
3 regions with different approximations in each.

What is required now is a thorough testing of the various forms of On
which are used in the two models, as well as an attempt to find X; in region
A as an integrable function.

A11 the models mentioned in this report are based on the Pao-Sah formula-
tion of drain current. Typically, instead of integrating directly to find
Qn,the route using QSC = Qn + QD is taken.

As has been noted previously, the Pao-Sah double integral formula is found
to be highly accurate for long-channel MOSFETs. For short-channel devices,
accuracy is not guaranteed.

The main inaccuracy in this model is due to its main feature: namely the
integration of Poisson's equation. In order to do this integration, two assump-
tions are needed: b, = ¢n(y) and a2¢/ay2 << az¢/ax2. The effect of these
assumptions is to make the model a combination of two uncoupled one-dimensional

models, rather than a true two-dimensional model.




What is needed now is to start with a model based on Pao-Sah, and to
extend it to something which is "more two-dimensicnal". Part of this
approach should be in the source-drain modeling. Thus bcq and $g are
no longer calculated from the one-dimensional Poisson, but from full solutions
to the source and drain equations. The clinic has analysed much of the large
amount of work done in this area. We have chosen the approaches which are
most mathematically sound (yet not too complex to be unworkable) and presented
them as a full and concise reference for future attempts to include source
and drain effects in a drain current model.

Along with this approach, we need to add some y dependence to the solu-
tion of Poisson's equation. This is particularly important at the source and
drain where irregular device geometry and rapid changes in carrier concentra-
tions along the channel (e.g., caused by pinch-off) can make the one-dimensional
approximation very unrepresentative of the true situation.

A clear understanding of the tricks and techniques used in one-dimensional
modeling is paramount before attempting the step to quasi-two-dimensionality.

The main achievement of this Clinic is that we have clarified the approaches
commonly used in one-dimensional modeling, consolidated much of the large amount
of work done on source and drain modeling, and possibly produced an optimal one-
dimensional model for MOSFET current. Initially, we had planned to produce a
two-dimensional model, but the lack of what we considered to be a fully justi-

fied 1-D formulation led us, instead, to concentrate on this, thus producing a

good basis for future mathematical modeling in this area.

For the computing, we have produced efficient, accurate algorithms for the
solution of surface potentials. These have been incorporated into parameter

extraction programs for the Brews and Van de Wiele models.
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NOTATION AND SYMBOLS

The notation and symbols detailed below have been used exclusively

throughout the report.

n

p
o (x,y)
¢ (y)

%50

Channel Length

Effective channel length

Width of the device

Depth of the inversion region

Depth of the depletion region

Electron mobility

Effective electron mobility

Oxide layer capacitance per unit area

Intrinsic Carrier Concentration

Dopant ion concentration (acceptors)

Charge density due to free electrons in the inversion layer
Total space charge density

Depletion region charge

y component of current density in the channel

y component of electron current density in the channel

Carrier density of electrons

Carrier density of holes

The potential measured relative to the source
¢ at x = 0, the surface potential

¢s(0) i.e., surface potential at the source



BS
DS
GS
GB
FB

oX

¢S(L) i.e., surface potential at the drain

Electron quasi Fermi potential

Hole quasi Fermi potential

Y
Ny

-1

=g ¢n{=—), bulk Fermi potential

Permittivity of free space
Dielectric constant for silicon

- K'SEO

Dielectric constant for oxide

Boltzman constant
Absolute temperature /°K
= q/kT

= {e4/(nsq8))

= (aS/NAqB))%: Debye Length (bulk)

VthALBCox

2e ANA/Coy
body bias relative to the source

drain bias relative to the source

gate bias relative to the source Tess the flat band voltage, V

gate bias relative to the body less
Flatband voltage

Thickness of the oxide layer

= (ompc)-l where o_ is contact resistivity, o is material

conductivity

: Intrinsic Debye Length
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APPENDIX II

NOTATION AND SYMBOLS OF VARIQUS MODELS

16

This section is a translation for changing expressions found in some of

the papers we have used into the clinic's standard notation.

It should be

noted that the source to substrate bias is zero in Pao-Sah [6] and Brews [2].

Thus it is only valid to set VBS = 0 when comparing these to the other three

papers.

Clinic

Pao-Sah [6]

(g+Up)/8

X

Van de Wiele [11]

Vg - Vs

Brews [3]

“Vgs

Vo -V

Vns

Bs °" Vgs

Brews [2]

0



(1]
[2]
[3]
ﬁ [4]

[5]
[6]
[7]
(8]

[9]
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